Vector Attribute Profiles for Hyperspectral Image Classification
نویسندگان
چکیده
منابع مشابه
Recent Developments from Attribute Profiles for Remote Sensing Image Classification
Morphological attribute profiles (APs) are among the most effective methods to model the spatial and contextual information for the analysis of remote sensing images, especially for classification task. Since their first introduction to this field in early 2010’s, many research studies have been contributed not only to exploit and adapt their use to different applications, but also to extend an...
متن کاملHigher Order Support Vector Random Fields for Hyperspectral Image Classification
This paper addresses the problem of contextual hyperspectral image (HSI) classification. A novel conditional random fields (CRFs) model, known as higher order support vector random fields (HSVRFs), is proposed for HSI classification. By incorporating higher order potentials into a support vector random fields with a Mahalanobis distance boundary constraint (SVRFMC) model, the HSVRFs model not o...
متن کاملHyperspectral image classification and application based on relevance vector machine
The relevance vector machine (RVM) is used to process the hyperspectral image in this paper to estimate the classifiers precisely in the high dimensional space with limited training samples. The detail of RVM is firstly discussed based on the sparse Bayesian theory. Then four multi-class strategies are analyzed, including One-vs-All (OAA), One-vs-One (OAO) and two direct multi-class strategies....
متن کاملHyperspectral Image Classification
Article history: Received 12 October 2014 Received in revised form 26 December 2014 Accepted 1 January 2015 Available online 25 February 2015
متن کاملMulti-Channel Morphological Profiles for Classification of Hyperspectral Images Using Support Vector Machines
Hyperspectral imaging is a new remote sensing technique that generates hundreds of images, corresponding to different wavelength channels, for the same area on the surface of the Earth. Supervised classification of hyperspectral image data sets is a challenging problem due to the limited availability of training samples (which are very difficult and costly to obtain in practice) and the extreme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Geoscience and Remote Sensing
سال: 2016
ISSN: 0196-2892,1558-0644
DOI: 10.1109/tgrs.2015.2513424